pH-Responsive Nano Carriers for Doxorubicin Delivery

Shahla Bagherifam • Frode Mitzow Skjeldal • Gareth Griffiths • Gunhild M. Mælandsmo • Olav Engebråten • Bo Nyström • Vasil Hasirci • Nesrin Hasirci

Received: 4 February 2014 / Accepted: 22 September 2014 / Published online: 7 October 2014
© Springer Science+Business Media New York 2014

ABSTRACT

Purpose The aim of this study was to design stimuli-responsive nanocarriers for anti-cancer drug delivery. For this purpose, doxorubicin (DOX)-loaded, polysebacic anhydride (PSA) based nanocapsules (NC) were combined with pH-sensitive poly (L-histidine) (PLH).

Method PSA nano-carriers were first loaded with DOX and were coated with poly L-histidine to introduce pH sensitivity. The PLH-coated NCs were then covered with polyethylene glycol (PEG) to reduce macrophage uptake. The drug release profile from this system was examined in two different buffer solutions prepared as acidic (pH5) and physiological (pH 7.4) media. The physical and chemical properties of the nanocapsules were characterized by Fourier transform infrared spectroscopy (FTIR), dynamic light scattering (DLS), ultraviolet and visible absorption spectroscopy (UV–VIS), and scanning electron microscopy (SEM). In vitro studies of the prepared nanocapsules were conducted in MDA-MB-231 breast cancer cells.

Results The results obtained by SEM and DLS revealed that nanocapsules have spherical morphology with an average size of 230 nm. Prepared pH sensitive nanocapsules exhibited pH-dependent drug release profile and promising intracellular release of drug. PEGylation of nanoparticles significantly prevented macrophage uptake compared to non-PEGylated particles.

KEY WORDS doxorubicin • nanocapsule • pH-responsive • poly L-histidine • polysebacic anhydride

ABBREVIATIONS

ATCC American type culture collection
DAPI 4′,6-diamidino-2-phenylindole
DCM Dichloromethane
DLS Dynamic light scattering
DNA Deoxyribonucleic acid
DOX Doxorubicin
EE Encapsulation efficiency
EPR Enhanced permeability and retention
FDA Food and drug administration
FTIR Fourier transform infrared spectroscopy
GPC Gel permeation chromatography
H-NMR Proton nuclear magnetic resonance
LC Loading capacity
MTS 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium
MW Molecular weight
NCs Nanocapsules
PBS Phosphate buffered saline
PDI Poly dispersity index